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FIGURE 13.22 View factors for two concentric cylinders of finite length: {a} outer cylinder to inner cylinder (b)
outer gylinder to itself {Source: Cengel, Yunus A. [1998]. Heat Transfer: A Practical Approoch. Pub.: McGraw-Hill)

r 1 1+R? T,=600K r=06m
Ri=— Ri== SR,R)=1+
L L "oy R!
: A
‘1“ 1
2|2
— i 2 Rﬁ ! = L=1m
Frpr (ReR) = o s(R,.,R,)m[S(R,,R,) -4.[?'} } . = 1000K I op=05m
D
(view facter for coaxial parallel disks)
Here, first, § is written as a function of R; and R, where, R;=r;/ URE .
L and R; = #;,/L. Then, Fy, is expressed as a function o{} R;and R;. Now, FIG Exn::fli? c}lgkz Coaxial
Fy, is easily obtained for any values of R; and R; by simply writing pa
Fyp (R, Ry=.
Therefore, in this case, R,=05
and, R =06
We get: F5(05, 0.6) = 0.232

Verify This result may be verified from Fig, 13.20 where, F,; is plotted against L/r; for various values of r;/L. Now, for
our problem, L/r;=1/0.5 = 2, and rJ,-/ L = 06/1 = 0.6. Then, from Fig. 13.20, we read Fy; = 0.232, approximately,
ie Fy; = 0.232
Therefore, net transfer between disks 1 and 2:

Qoet = Ap Fp o (T - THW (from Eg. 13.40)
ie. Qe = 8992 x 10° W.

13.6.3 By Use of View Factor Algebra
Often, we have to find out view factors for geometries for which readily no analytical relations or graphs are
available. In such cases, sometimes, it may be possible to get the required view factor in terms of view factors of
already known geometries, by suitable manipulation using view factor algebra. For this purpose, we remember
the definition of view factor (as the fraction of energy emitted by surface 1 and directly falling on surface 2), and
invoke the summation rule, reciprocity relation, and inspection of geometry.

We shall illustrate this procedure with some important examples:
fxomple 13.19. Find out the net heat transferred between the areas A; and A; shown in Fig. Example 13.10. Area 1 is
maintained at 700 K, and area 2 is maintained at 400 K . Assume both the surfaces to be black.
Solution. This is the case of heat transfer between two black surfaces. So, we use Eq. 1340 i.e.
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Quet = ArFp (T = Ty = APy (T - T, W ..(13.40)

So, the problem reduces to calculating the view factor Fy, or F,,. We
see that to calculate F, for areas A, and A, as oriented in the Fig. Example
13.10 we do not readily have an analytical relation or a graph. Let us de-
note the combined areas (A, + A;) by A; and (A, + A,) by A,. Then, we see
that A and A, are perpendicular rectangles which have a common edge,
and we have graphs or analytical relation for the view factor for such an
orientation. Then, we resort to view factor algebra, as follows:

Remember that by definition, view factor F,, is the fraction of radiant
energy emitted by surface 1 which falls directly on surface 2. Looking at
the Fig. Example 13.10 we can say that fraction of energy leaving A; and
falling on A, is equal to the fraction falling on A, minus the fraction falling

FIGURE Example 13.10 Perpendicular " Av

rectangles with o common edge Le. Frp=Fy~Fy (by definition of view factor)
i.e. Fyy =Fg- % - Fy- % (since by reciprocity relation, A\ Fig = AgFig and A Fiy = Ayg-Fy)
1 1
ie. Fia= 3-;;*—-(]—‘&.5 —Fg3) - %{Pﬁ - Fp) (Eq.A ... using the definition of view factor, as done in first step above)
1 1

Now, observe that view factors Fs, Fgs, Fy5 and Fy; refer to perpendicular rectangles with a common edge, and can
be readily obtained from Fig. 13.21, or by analytical relation given in Table 13.5.

We re-write the view factor relation for perpendicular rectangles with a common edge, given in Table 13.5 as
follows, for ease of calculation with Mathcad:

2 oY -1 - Weatan| >
Hi= 3 Wi=o AW)i=—o B(W)—Watan(w)
1
C{H) := H-atan (%J D(H, W) == (H* + W) Z.atan 1 T
(H* +W?)2

Wi H?
(1+W-1+HY) [ W2-(1+W? + H?) H?.(1+ H2 +W?)
EH, W) = T 7 2 ) ) ) 7 7
A+W2+HY) | Q+WH-WI+HY | |+ HO)H +WD
Fy(H, W) := A(W)- (B(W) +C(H)- D{H, W)+ l-tn(E(H,W))) (Eq. B...view factor for coaxial
4 perpendicular rectangles with
a common edge)
To find Fgs:
X=5 Y=5 Z:=5 (w.r.t. Fig. 13.18 (c) and Fig. Example 13.12)
H:= z ie. H=1
X
W= % ie. W=1
Therefore,
Fy(1,1)=02 (substituting in Eq. B)
ie. Fes =02 (wiew factor from area A, to As)
Note: This value can be verified from Fig. 13.21 also.
To find Fg,:
X:=5 Y:=5 Z=3 (w.r.t. Fig. 13.18 (c) and Fig. Example 13.12)
H:= -;— ie. H=06
W= Y ie. W=1
X
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Therefore,

F4(0.6, 1) = 0.161 (substituting in Eg. B}
ie. Fg = 0161 (view factor from area A, lo Aj)
Note: This value also can be verified from Fig. 13.21.
To find F
X:=5 Y=3 Z:=5 (w.r.t. Fig. 13.18 (¢} and Fig. Example 13.10)
Z .
H:= X ie. H=1
W= Y ie. W=06
X
Therefore,
F,(1,0.6) = 0.269 (substituting in Eq. B)
ie. Fys = 0.269 (view factor from area A, fo Ag)
Note: This value also can be verified frem Fig. 13.21.
To find Fyy:
X=5 Y:=3 Z:=3 (w.r.t. Fig. 13.18 (c) and Fig. Example 13.10)
Z .
H:= X ie. H=06
Y |
W= 5 e W=06
Therefore,
Fy(0.6, 0.6) = 0.231 (substituting in Eq. B)
ie Fy = 0231 (view factor from area A4 to Ajz)
Note: This value also can be verified from Fig. 13.21.
Areas;

From Fig. Example 13.10, we have:
Ay=10 A;i=10 Ay:=15 A =15
As:=25 A, :=25m’

Then, from Eq. A:

A A
Fip= 8 (Fy - Ey)— =2 (Fs —Fp)
¥ [Al & 63 A[ 45 4

ie. F); = 0.041 (view factor from A, to Ay)
Note: F;, can be calculated, if required, by reciprocity relation, ie. A,.F}, = 4,.F,,
Therefore, net heat transfer between surfaces 1 and 2:

Qret = A Flp o (TP -T,H W {from Eg. 13.40)
Here, we have:
T,=700K (temperature of surface A,)
T, := 400 K (temperature of surface A,)
o= 5.67 x 10" W/m’K (Stefan—Boltzmann constant)

Therefore,
Quee = Ay Fry 04T = T,

ie. Qrer = 4.926 x 10° W,
Exomple 13.11. Find out the relevant view factors for the geometries shown in Fig. Example 13.11:

(a) a long tube with cross section of an equilateral triangle

(b) a black body completely enclosed by another black body

(c) diagonal partition inside a long square duct

(d) sphere of diameter 4 inside a cubical box of sides, L = d

(e) hemispherical surface closed by a plane surface, and

(f) the end and surface of a circular cylinder whose length is equal to diameter.
Solution. General principle in solving these problems is to invoke: Summation rule, reciprocity theorem, inspection of
geometry for symmetry, and of course, remembering the definition of view factor:
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2 3 . L 1 2
1 3
;

{(a) Equilateral triangle (b) A black body completely {c) Diagonal partition in
enclosed by another black body a long square duct
1 L=d 2 2 L=d
Ay
1 3 A
(d) Sphere inside a (e) Hemispherical bowt () Cytinder with length
cubical box = diameter

FIGURE Example 13.11 Different geometries

(a) Long tube with cross section of equilateral triangle: See Fig. 13.11a.

For surface 1: Fu+Ep+Fpp=1 (summation rule)
But, Fy=0 (since surface 1 is flat and cannot “see’ itself)
Therefore, Fa+Fp=1

Now, by inspection of geometry, we find that surfaces 2 and 3 are located symmetrically w.r.t. surface 1, since it is
an equilateral triangle. Therefore, radiation from surface 1 is divided equally between surfaces 2 and 3.
ie. Fi; =F3=05

Similarly, for surface 2, we write:

Fy+Fu=1
ie. Fya=1-Fy
But, Fyuy = %—-Fu =Fp (since Ay = Ay)
2
Therefore, Fpy=1-F,=05

Similarly, for surface 3.
{b) Black body enclosed inside a black enclosure: See Fig. Ex. 13.11b

For surface 1: Fu+Fp=1 (by summation rule)
and, ApFyp = Ay Fy (by reciprocity)
ie. F, = =L.F

12 A] 21
Now, Fu=1-Fp
A
le. Fy=1--%F
1 A e
But, Fy =1 (since all the energy radiated by surface 2 is directly intercepted by surface 1.)
Therefore, Fh=1- é‘—
1
(c) Diagonal partition within a long square duct: See Fig. Ex. 13.11¢. s

For surface 1: Fy; + Fjp + F3 =1 (by summation rule)

But, Fu=0 (since surface 1 is flat and canmot ‘see’ itself.)

Therefore, Fiz+F3=1 .

By symmetry: Fys = Fyp = 0.5 (since radiation emitted by surface 1 is divided equally between surfaces 2 and 3)

A
By reciprocity: Fy = —A—‘-Fu

2
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ie. Fp=—5—05=071
{d} Sphere inside a cubical box: See Fig. Ex. 13.11d
For surface 1: F; ;=0 (since surface of the sphere is convex and cannot “see’ itseif.)
And, - Fh+Fp=1 (by summation rule)
Therefore, Fi; =1
By reciprocity Fy = %-Fu
2
42
ie. Fy = fiz =2 wsince L=d
6-d 6
ie. Fy = 0.524,
(e} Hemispherical surface closed by a flat surface: See Fig. Ex. 13.11e.
For surface 1: FhatFp=1 (summation rule)
Also, Fu=1 (since surface 2 is flat and cannot “see” itself, and all radiation
emitted by surface 2 falls directly on the hemisperical surface 1.)
. . A
By reciprocity: F,= Al -Fn
i
2
Tr
ie. Fy, = ‘1= 05
25 2a0?
Therefore, F;;=1=-Fp =05

(f) End and sides of a circular cylinder {L = d): See Fig. Ex. 13.11f.
From the Fig. note that the two end surfaces are denoted by 1 and 3 and the side surface is denoted by 2.

View factor Fi: Surfaces 1 and 3 can be considered as two concentric parallel disks. Therefore, Fy; can be found
out from Fig. 13.20 or by analytical relation given in Table 13.5. Let us use the analytical relation:

We have:
] U] 1+R}
R; = T R;‘z SR, R}y=1+ R
1
1 RY [
Ej(Ry R) = | SR R)) —{S(R,, R¥ - 4(7{’“} } {view factor for coaxial parallel disks)

Now, for a cylinder with L = &:
R;:=05 R;=05

Therefore, Fy(R;, R) = 0.172
ie Fi3 = 0172 (view factor from surface 1 to surface 3)
For surface 1: Fy+Fp+Fp=1 (by summation rule)
But, F,=0 (since surface 1 is flat and cannot "see’ itself.)
Therefore, Fypy=1-Fj
ie. Fy, = 0.828
N A,
By reciprocity: Fy = T-Flz
2
x-d*
ie. Fy = —3 0828
md L
w-d*
. 4 :
ie Fy = ;‘F-U.BZS (since L = d)
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0.828

ie. Fu=—— =0207
Also, by symmetry: Fy; = Fy; = 0.828

and, Fpy = Fyy = 0.207.

Exemple 13.12.  Find out the view factor (Fy;) of a cavity with respect to itself. Hence, find out the view factor F 11 for the

following:

{a) a cylindrical cavity of diameter ‘d" and depth ‘¥’
(b) a conical cavity of diameter ‘4" and depth '’
{c) a hemispherical bowl of diameter ‘d".

Solution. See Fig. Example 13.12

2 2 < d .
'd ¥
% 2 A d
1 1 h ! h 1 hN 2
200
< > r
d
{a) Cavity (1) closed by a (b) Cylindrical cavity (c) Conical cavity (d) Hemispherical bowl

hypothetical fiat surface {2)

FIGURE Example 13.12 View factors for cavifies

View factor of a general cavity w.r.t. itself:
See Fig. Example 13.12a.

We desire to find F,;. It is obvicus from the Fig. Example 13.12 that part of the radiation emitted by the cavity
surface 1, falls on itself and therefore, Fy; exists.

Close the opening (or mouth) of the cavity by a hypothetical flat sutface 2. Then, surfaces 1 and 2 together form an
enclosure. We can wrtite:

For surface 1: Fh+F;=1 ((a)...by summation rule)
For surface 2: Fyy+Fpy=1 (by summation rule)
But, Fy=0 (sintce surface 2 is flat and cannot ‘see’ itself)
Therefore, Fp=1
Further, AyFiy = Ay Fy (by reciprocity)
. A
ie. F,=22
12 Al
Now, Fiy=1-Fyp (from Eq. a}
A
ie. Fu=1--% Eq. b
ie 11 3 (Eq. b)

1
Eg. b is an important result, since it gives the shape factor of any general cavity w.r.t. itself.
Now, this result will be applied to following specific cavities:
(a} Fy for a cylindrical cavity of diameter ‘4’ and depth ‘i": See Fig. Example 13.12b.
We have: Fj;=1- %

1

ie. Fh=1- (Note that A, consists of the area of bottom circular surface and the cylindrical side surfaces)
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4.k

ie. [y = ——.
T 4h+d

(b} Fy, for a conical cavity of diameter ‘4’ and depth ‘h": See Fig. Example 13.12¢.

We have: Fjp=1- 4
A
d
ie. Fh=1- 7,".‘%1
2
. d
ie. Fhp=1-—
11 L
ie. Fpy = 1-sin(a
Alternatively:
To get Fy; in terms of depth ‘h’, we write:
We have: Fy=1--%
2.L
ie. Fy=1- 4
. 2 42
2. 00+ —
4
ie. - Fp=1- Y

,/4-h2+—d—’

(where, L is the slant height of the cone)

(where, « is the half-vertex angle of the cone.)

(c) Fy; for a hemispherical bowl of diameter ‘d": See Fig. Example 13.12d.

We have: i =1—é5
Al
md*
4
ie Fp=1- ]
2
- 1
i.e Fy=1- £y
ie. Fy, = 0.5.

This result means that for any hemispherical cavity, half of the radiation emitted by the surface 1 falls on itself; it

also means that the remaining half falls on the closing surface 2.

13.6.4 By Graphical Techniques

In some cases, it is possible to get view factors for some geometries
by some simple graphical construction. Let us illustrate the princi-
ple of this method as follows: (See Fig. 13.23).

dA, and dA, are two differential areas at a distance r as shown. ¢,
and ¢, are the angles made by the normals to 44, and dA, with the
line connecting dA; and dA,.

Now, let us make a graphical construction as follows: Con-
struct a hemisphere of radius equal to unity with dA, as the centre,
and project the element 4A, on the surface of this hemisphere; this
projection is shown as dA, in the Fig. 13.23 From geometry, we
know that dA; = dA;.cos (¢,)/r*. Next, project dA, on the tangential
plane drawn through dA,, ie. on the base of the hemisphere. This
projection is dA4 in the figure above. Again, dA, is equal to dA,
multiplied by the cosine of the angle ¢, formed between the two
projections. Thus, we have:

Hemisphere of
radius = unity

dA,

FIGURE 13.23 Graphical determination
of view factor between two differential
areas dA; ond dA,;

RADIATION




dA, = dA, c05(¢1)r-;05(¢z)

Now, base of the hemisphere is a circle of unity radius, whose area is equal to  Therefore, area dA, divided
by the area of circle of unity radius is:

dAy _ 4, Ccos(ér)-cos(g))
= dA, 5
n rr
Now, recollect that we have already proved the view factor between two differential areas dA, and dA, to
be:

Fia,_aa, = cos(gy) ':_’fz(%)'m" .(13.31)

Le. from the above two expressions, it is clear that view factor from dA, to dA, is given as the ratio of two areas
viz. dA to 7, where dA, is the projected area of dA; on the base of the hemisphere and dA, is the projection of dA,
on the surface of the hemisphere of unity radius.

If the view factor is desired from a differential area dA; to a
finite area A, {instead of to a differential area dA,), the same proce-
dure is followed: area A, is projected over the surface of the hemi-
sphere of unity radius, and the resulting area is further projected on
the base of the hemisphere, and then the view factor is computed as
the ratio of this projected area to .

Many graphical and optical integrators have been developed to
find out view factors between two surfaces, based on this principle.

However, above method is difficult to apply for the case of
complex geometries. In such cases, experimental techniques have
been adopted with success, using scale models, the underlying prin-
ciple being;: “view factors of geometrically similar systems are iden-
FIGURE 13.24 Crossed strings method  tical’.

to determine view factor between two Holtel's crossed strings method This is an extremely simple
infinitely long surfaces method to find out the view factors between infinitely long sur-
faces; generally, channels and ducts which have a constant cross

section and are very long can be modelled as two-dimensional and infinitely long. Consider Fig. 13.24:

A, Band C, D are the end points of two surfaces 1 and 2. These are connected by tightly stretched strings as
shown. Then, the view factor F, between surfaces 1 and 2 is given by:

po o Lstle) =y +Ly)
2= 7L,

Z(Crossed strings) — L{Uncrossed strings)
2-(string on surface 1)

Note that this method can be applied even when the two surfaces 1 and 2 have a common edge (as in the
case of a triangle); then, the common edge is treated as an imaginary string of zero length. Also, note that sur-
faces 1 and 2 may be curved surfaces, but L, and L, are the straight lengths connecting the edges of the respective
surfaces.

Table 13.4 gives view factors for a few two-dimensionai geometries.
Example 13,13, Find out the view factors F;; and Fy, for two infinitely long, parallel planes whose centre lines are on the
same vertical line, as shown in Fig. Example 13.13. Flate 1 is 1 m wide, plate 2 is 0.5 m wide and they are spaced 0.6 m
apart.
Selution.
Data:

Li=1m L;=05m §:=06m

To apply crossed strings method, we calculate Ly, L, L and Ly

ie. Fiy = .(13.46)
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2

.L3:= s%[l"ﬂz

ie Ly=065m
and, L,:=1I, (by symmetry)

Ly = fS? +0.75

ie. Lg=09m

and, L :=1Ls (by symmetry)
Now, we have:
£(C 1 strings) - £ (Uncrossed stri FIGURE Example 13.13 Crossed strings
Fip = gs)— 2 &) -(13.46) method to determine view foctor between

2-{string on surface 1) two infinitely long surfaces

(Ls + L)~ (Ly + L)

ie. Fipi= 21

ie. F,=031 (view factor fram surface 1 to surface 2)
Similarly, Py = Gt Sl

i.e. Fy = 0621 (view factor from surface 2 to surface 1.}

Alternatively:

We an use the ready formula given in Table 13.4,

1 1
(W, + W))* + 42 - [(W, - W.)* +4]2
i ¥ 2W,
In the above formula, notations are with reference to Fig. 13.17a. In the present case, according to the notation of
Fig. Example 13.13, i stands for plate 2 and j stands for plate 1, and the spacing L stands for 5.
ie. wy=L,

(parallel plates with midlines connected by perpendicular.)

wI o= Ll
L:=5
W= e W, =083
L
W
W, = -L-'— ie. W;=1667

1 1

W+ W) + 47 — (W, ~W.)E + 4]

Then, o LWt W) 4P (0, - W) 4 4]
2.W,

ie. F; = 0,621 (view factor from surface 2 to surface 1..same as obtained earlier.)

13.7 Radiation Heat Exchange between Grey Surfaces

S0 far, we considered radiation heat exchange between black bodies. This was relatively simple since a black
body absorbs all the energy falling on it and none is reflected. However, in the case of grey bodies, absorptivity
is less than unity and the effect of multiple reflections has to be taken into account, and this makes the analysis
more complex.

Generally, there are three methods to deal with the problem of radiation heat exchange between grey bodies:

(i) The reflection method

(ii) The electrical network method, and
(iii) The absorption factor method.

Of these, the reflection method is applied to the simplest of cases, where the number of reflections between
the interacting surfaces is finite, or when the surfaces are black. The electrical network method is applied to cases
of moderate complexity where the number of reflections involved are infinite, but the number of surfaces in-
volved are not more than four or five; this method is very simple, since the standard techniques of solving

RADIATION




electrical networks are applied to solve the equivalent thermal networks. The absorption factor method is used to
solve radiation problems that can be graded as ‘difficult’; here, the resulting system of linear algebraic equations
have to be solved by the standard mathematical techniques (such as: matrix methods or using standard computer
library programs).
Whatever the method followed, following assumptions are made to simplify the solution:
(i) All the surfaces of the enclosure are opaque (7 = 0), diffuse and grey
(ii) Radiative properties such as p, £ and « are uniform and independent of direction and frequency
(iii) Irradiation and heat flux leaving each surface are uniform over the surface
(iv) Each surface of the enclosure is isothermal, and
(v) The enclosure is filled with a non-participating medium (such as vacuum or air).
In this book, we shall discuss only the ‘electrical network method’, since it is simple to apply and gives a
physical ‘feel’ of the problem. However, before we proceed with the discussion of electrical network method, we
shall study a special case of radiative heat transfer between small grey bodies.

13.7.1 Radiation Exchange betwween Small, Grey Surfaces

Let us consider radiative heat exchange between two small, grey bodies, 1 and 2. By ‘small’, we mean that their
size is very small compared to the distance between them. Let the emissivities of surfaces 1 and 2 be &, and &,
respectively, and their absorptivities be &, and a;, respectively. Since the surfaces are grey (not black), surely we
have to consider the effect of multiple reflections; however, implication of ‘small’ body is that the portion of
radiation emitted by either body that is reflected by the other body is considered to be ‘lost’ in space and does not
return to the originating surface.

Then, we write:

Energy emitted by body 1 and incident on body 2 = Fip.A.6.6.T}
Of this energy, amount absorbed by body 2 = a.F,.A.6.0T}
Therefore, energy transferred from body 1 to body 2
Q) =& & A Fyyo T (since @, = & by Kirchhoffs law)

Similarly, energy transferred from body 2 to body 1 is:
Q2= &84y Fy0.T;
and, net radiant energy exchange between 1 and 2 is:
Qu =686 ArFy (T -TY) = 6,6y Ay Fyy- o (T} - T -(13.47)
since Ay F=A3Fy {(by reciprocity)
The product, (£.£,) is known as ‘equivalent emissivity (£,) for a system of two ‘small’ grey bodies.

13.7.2 The Electrical Network Method
This method, introduced by Oppenheim in the 1950s, is simple and direct; it emphasises on the physics of the
problem, and is easy to apply. Before we introduce this method, let us define two new quantities, namely irradia-
tion and radiosity: (See Fig. 13.25).
Irradiation, (G) is the total radiation incident upon a surface per unit time, per unit area (W/m?).
Radiosity, (/) is the total radiation leaving a surface, with no regard for its origin (i.e. reflected plus emitted
from the surface) per unit time, per unit area (W,/m?).

Now, from Fig. 13.25, it is clear that total radiation leaving the surface (i.e. radiosity, J} is:

J=pG+eE,
For a grey, opaque (7 = 0} surface, we have:
Radiosity, J p=(1-a)=(1~g (from Kirchhoff's law)
. - - Therefore,
Incident: G Refleted: p.G Emitted: e.E, J={1-8G +&E,
\/ / or, 6= 1=tk
(1-¢€)

{5 ‘ RN Now, net rate of radiation energy transfer from the surface is
\Surface given by: (rate of radiation energy leaving the surface minus the

FIGURE 13.28 ko diation rate of radiation energy incident on the surface), i.e.
and radiosity Q =]-G

A
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Q. ,_(f —E-EbJ
A l1-¢

Therefore,

ie. = , W, ..{13.48)

By analogy with Ohm'’s law, we can think of { in Eq. 13.48 as a current flowing through a potential differ-
ence (E;— ), and the factor (1 — £)/A.£ as the resistance. Now, this resistance is the resistance to the flow of radiant
heat due to the nature of the surface and is known as ‘surface resistance (R)'.
ie.

_-g
A-g
Surface resistance for a surface { is shown schematically in Fig. 13.26a.

R

(surface resistance)

Ey J
Ry=(1-¢)(Ae)
Surface i Surface f
(a) Surface resistance (R)) {b) Space resistance (Rj)

FIGURE 13.26 Surfoce resistance and spoce resistance

From Eq. 13.48, we see that if E;; > J,, i.e. if the emissive power is greater than the radiosity, then (), will be
positive, which means that the net heat transfer is from the surface i. On the other hand, if Ey, < J, ie. if the
emissive power is less than the radiosity, then (; will be negative, and this means that the net heat transfer is fo
the surface i.

For a black body emissivity € = 1; so, the surface resistance is zero, and

T = Ey (for a black body...(13.49))

Also, many surfaces in numerous applications are adiabatic, i.e. well insulated, and net heat transfer
through such a surface is zero, since in steady state, all the heat incident on such a surface is re-radiated. These
are known as re-radiating surfaces. Walls of a furnace is the familiar example of a re-radiating surface. Obvi-
ously, for a re-radiating surface, ; = 0, and from Eq. 13.48 we get:

J;=Ey=oT} (for a re-radiating surface...(13.50))

Note that the temperature of a re-radiating surface can be calculated from the above equation; further, note
that this temperature is independent of the emissivity of the surface.

Again, consider two diffuse, grey and opaque surfaces i and j, maintained at uniform temperatures T; and T;,
exchanging heat with each other. Then, remembering the definitions of radiosity and view factor, we can write
for the radiation leaving surface i that strikes surface j:

Q;= Ai'Fij'ff
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Similarly, for surface j, we have:
Qi =4ArFirks

Therefore, net heat interchange between surfaces i and j is:
Qi} = As'Fif'ff - Ai'Fji'Ij

Le. Qi=AcFy(i-DW .-(13.51)
since ApFy = ApFy (by reciprocity)
ie. Q= L—;b— Ww. ..(13.52)
(A;-Ey)
Again, by analogy with Ohm's law, we can write Eq. 13.52 as:
0,= 10t v
R;
1
where, Ry = ...(13.53)
Ay

R;; is known as ‘space resistance’ and it represents the resistance to radiative heat flow between the radiosity
potentials of the two surfaces, due to their relative orientation and spacing.

Space resistance is illustrated in Fig. 13.26b. Note from Eq. 13.52 that if J; > |, net heat transfer is from surface
i to surface j; otherwise, the net heat transfer is from surface j to surface i.

Thus, for each diffuse, grey, opaque surface, in radiant heat exchange with other surfaces of an enclosure,
there are two resistances, i.e. the surface resistance, R; = (1 - £)/{A.£), and a space resistance, R;=1/ (A;.Fy).

For a N surface enclosure, net heat transfer from surface i should be equal to the sum of net heat transfers
from that surface to the remaining surfaces, i.e.

N N Nop ‘
Q= 205= DAk -1 = DA w ~(1354)
i=1 j=1 j=1 ¥ .
’ N
. Ebi —L' _ Ii _]}
ie. o Z{ R, W .{13.55)

where, R; is the surface resistance and Rj;is the space resistance.

This situation is shown in Fig, 13.27.

As can be seen from Fig. 13.27 rate of radiation ‘current’ flow to surface / through its surface resistance must
be equal !0 the sum of all the radiation current flows from surface i to all other surfaces through the respective
space resistances.

In general, there are two types of radiation problems: first (and most common), when the surface tempera-
ture T, and therefore, the emissive power E,, is known; and, the second type is when the net radiation heat

transfer at the surface i is known. Eq. 13.55 is useful in solv-

J ing the first type of problems, i.e. when the surface tempera-
! ture is known; instead, if the net heat transfer rate at the
J surface is the known quantity, Eq. 13.52 is the applicable
equation. Essentially, the problem is to solve for the

Jy radiosities [y, [, ..., J,. As mentioned earlier, electrical net-
work method is convenient to use if the number of surfaces
in an enclosure is limited to about five; however, if the
number of surfaces is more than five, the direct approach is
to apply Eq. 13.55 for each surface whose temperature is
known, and Eq. 13.52 for each surface at which the net heat
transfer rate is known, and solve the resulting set of N linear,
algebraic equations for the N unknowns, namely, J,, J,, ..., .

Surface i

FIGURE 13.27 Radiation heot transfer from
surface i to other surfaces in a N-surface
enclosure
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by standard mathematical methods. Once the radiosities
are known, Eq. 13.48 may be applied to determine either
the heat transfer rate or the temperature, as the case may
be.

13.7.3 Radiation Heat Exchange in
Two-zone Enclosures

Now, with the background of above discussion on the
surface resistance and space resistance in connection
with diffuse, grey, opaque surfaces, let us consider the
radiant heat transfer in a two-zone enclosure. This sim-
ply means that the two surfaces, together, make up the
enclosure and ‘see’ only themselves and nothing else.
Many, practically important geometries may be classi-
fied as two-zone enclosures, €.g. a small body enclosed
by a large body, 2 pipe passing through a large room,
concentric spheres, concentric long cylinders, long, par-
allel plane surfaces, etc.

Surface 2,
Apta T2
R, =(1- £ WA £)
Ry={1- €;)/Az.€5)
Surface 1, Ry = 1(AF12)
ALen Ty
Q, Q.,S Q,
Ep > 4 4y > Epa
Ry Rz R,

FIGURE 13.28 Two-surface enclosure and its
radiation network

Fig. 13.28 shows a schematic of a typical two-zone enclosure and the associated radiation (or, thermal) net-

work-

Surfaces 1 and 2 forming the enclosure are diffuse, grey and opaque. Let their emissivities, temperatures and
areas be (¢, Ty, Ap and (& T A,), respectively. The radiation network is shown in Fig. 13.28. Each surface has
one surface resistance associated ‘with it and there is one space resistance between the two radiosity potentials,
and all the resistances are in series, as shown. The ‘heat current’ (Qpp) in this circuit is calculated by dividing the
‘total potential’ (Ey - Ej) by the ‘total resistance’ (R, + Ry; + Rp). So, we write:

o _En~Ee
Qp=01=Q2= R+ Rip + R
. _ Ep-Ep
e Qu=1-4 +PL~+1—_£
Arey ArRy A&
. _ o (T - T3)
ie. Qir= 1’£l+ 1 +1#£2 W.
Ay, AyFp Aré

Q2
Ep=dy  —F

.._-
Ryp = WAFig)

Epy = Ja

FIGURE 13.29 Rodiotion network for
two black surfaces forming an enclosure

..{13.56)

Eqg. 13.56 is an important equation, which gives net rate of heat transfer between two grey, diffuse, opaque
surfaces which form an enclosure, i.e. which ‘see’ only each other and nothing else.

Now, let us consider a few special cases of two-surface enclosure. Basic radiation network for all these cases
is the same as given in Fig. 13.28 and the basic, governing equation is Eq. 13.56, which is modified depending

upen the case considered.

Case (i): Radiant heat exchange between two black surfaces:
For a black body, £ =1, and ] = Ey, as explained earlier. i.e. surface resistance [= (1 - &/ (A.g)) of a black body is
zero. Then, the radiation network will consist of only a space resistance between the two radiosity potentials, as

shown in Fig. 13.29:
Then, from Eq. 13.56, we get:

_ o -T)
12 = 1
Ay-Fp
ie. Oy = ArFpp o (T = TH W

(for twe black surfaces forming an enclosure...(13.57))

Next, we shall consider four cases of practical interest where the view factor between the inner surface 1 and
the outer surface 2 (i.e. F12) is equal to 1, and also the net radiation from a grey cavity.

RADIATION




Case (ii): Radiant heat exchange for a small object in a large cavity:
See Fig. 13.30 (a). A practical example of a small object in a large cavity is the case of a steam pipe passing
through a large plant room. '

For this case, we have:

A _
e
and, Fi,=1
And, Eq. 13.56 becomes:
Qu=Arog(TH-TH (for small object in a large cavity..(13.58))

Case (iii); Radiant heat exchange between infinitely large parallel plates:
See Fig. 13.30 (b). In this case, A; = A, = A, say,and F; = 1
Then, Eq. 13.56 becomes:

Ao (R -T)

12 1 1
—+-—-1
£ &

{for infinitely large parallel plates..(13.59))

Case {(iv): Radiant heat exchange between infinitely long concentric cylinders:
See Fig. 13.30 (c). In this case:
Fi=1
Then, Eq. 13.56 becomes:

Apo (T - 1)
Q= A
1, [4].[L B} 1]
£ A2 1y
=n

Ay

Z2— ) L
Remember that A, refers to the inner (or enclosed) surface.
Eq. 13.60 is known as ‘Christiansen’s equation’.

Case (v): Radiant heat exchange between concentric spheres:
See Fig. 13.30 (d). In this case:

(for infinitely long concentric cylinders...(13.60))

where,

Then, Eq. 13.56 becomes
Ayo(hi - T)

L+(ﬁJ.[L_1J
g Afle
A _(n :

Ay r

Remember, again, that A, refers to the inner (or enclosed} surface.

Case (vi): Energy radiated from a grey cavity:

Consider a grey cavity as shown in Fig. 13.31. Let g, A, and T, be its emissivity, area and temperature (in
Kelvin), respectively. Now, energy will stream out of the cavity into the surrounding space through the opening
{or, mouth) of the cavity. Let the opening be covered by an imaginary surface A,. Thus, it is a two-surface
enclosure. Now, since the cavity is very small compared to the space outside, practicatly all the energy emitted
by the cavity will be absorbed by space, and it is reasonable to assume that radiation coming to the cavity from
space is negligible, i.e. the space acts like a black body at a temperature of zero Kelvin as far as the cavity is

{for concentric spheres...(13.61))

where,
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Ay Tatp Y A, Tgy
‘ e

(a) Small object in a large cavity (b} infinitely large parallel pianes
fy 2 f
ry ————— |
(c) Infinitely long concentric cylinders (d) Concentric spheres

FIGURE 13.30 Few two-surface enclosures where Fy; = 1

Ay Q;
/ Ey ——> 4 2= Ep =
AN —8————— NN
A1, T1. Eq R1 R12

Ry = (1 — g M(Are)
Ry = 1{ALFp,)

(a) Grey cavity {b) Radiation network

FIGURE 13.31 Radiation from a grey cavity

concerned. So, surface 2 is black at zero Kelvin for our analysis. Implication of this is that surface resistance of
surface 2 is zero, and radiosity of surface 2 is equal to its emissive power, which in turn, is equal to zero since the
temperature is zero Kelvin. So, the radiation network for this case will be as shown in Fig. 13.31:

Therefore, net energy radiated from the grey cavity is given by:

Q,, = =t
2=
Rl + R'lZ
ie. Q= Enz0 (since Eyp = 0 at T = zero Kelvin)
R1 + RIZ
. o T
e : Qu=1-g 1
&A Ak
Now, Fi+Fp=1 (by summation ruie)
L€ n=1-Fy
Then, 24, becomes:
Q= cr-Tl4
12 1- £ 1
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_ Ao A-Fy)

ie, =

Qrz (1-&))(1-F;)+¢
. Ay-e10TH-(1-F
ie. 0, = raal -k

1"-6'1 _Fll +€]'F11 + £
L_F
ie. Q= A&t —E‘LL_— W (net radigtion from grey...(13.62))
1-(1-£)hRy

Eq. 13.62 is an important result, which gives net radiation from a

grey cavity to surrounding space. If it is desired, for example, to calcu-
late the net radiation from a blind hole drilled in a flange, then the
relation to use is the Eq. 13.62.
Example 13.14. A long pipe, 50 mm in diameter, passes through a room and
is exposed to air at 20 deg.C. Pipe surface temperature is 93 deg.C. Emissiv-
ity of the surface is 0.6. Calculate the net radiant heat loss per metre length
of pipe.

(M.U. 1991}
Solution. The pipe is enclosed by the room; so, it is two-surface enclosure
problem. Further, area of the pipe is very small, compared to the area of the
room. Therefore, this is a case of a small object surrounded by a large area,
and we have: ’

FIGURE Example 13.14 Two-surface
enclosure with A| << A,

4,
Luop
A,
and, Fi=1
: Qu=4Ay0e-(T - TH {for small object in a large cavity...(13.58))

Data:
d:=005m Li=1m g:=06 7T,:=93+273K T,=20+273K
o= 567 x 10°° W/(m?K) (Stefan—Boltzmann constant)
Now, Ay = mdy L
ie. Ay = 0157 m? (surface area of the pipe per metre length)
Then, applying Eq. 13.58, we get:
Q= Arog (T - T,)

ie. Q1 = 56.507 W (net radiant heat loss from the pipe per metre length.)
T, =1073K Example 13.15. Calculate the net radiant heat interchange per m? for two large par-
e =03 ailel plates maintained at 800°C and 300°C. The emissivities of two plates are 0.3 and

/ T 0.6, respectively.  (M.LL. 1993)

Solution. The plates are parallel to each other, and are very large; so, it is a two-
T,=573K surface enclosure problem, with two infinite parallel plates. We have:

S a=0e D
! T,=800+273K T,=300+273K £§:=03 &:=06
0= 567 % 107 W/(m?K) (Stefan—Boltzmann constant)
quU‘RE Example 13.15 Two A =1 m?® (area of the surface)
infinitely large parallef plates For infinite parallel plates, we have the relation:
Ag(Ti-T}
Qp= —H{M w (for infinitely large parallel plates ...(13.59))
=1
£ &
ie. Q= 1726 x 10* Wim? {radiant heat transfer per m® of the plates.)

Example 13.16. A spherical liquid oxygen tank, 0.3 m in diameter is enclosed concentrically in a spherical container of
0.4 m diameter and the space in between is evacuated. The tank surface is at -~183°C and has an emdssivity of 0.2. The
container surface is at 25°C and has an emissivity of 0.25. Determine the net radiant heat transfer rate. M.U)
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Solution. This is the case of two surface enclosure, with one sphere enclosed by another sphere. If 1 denotes inner

sphere, and 2 outer sphere, we have for view factors: F; =0 and Fy; = 1

Data:
T, =183 + 273K T,:=25+273K  g§:=02
o= 567 x 107 W/(m?K} (Stefan-Boltzmann constant)
Ayi=d-mrlie Ay= 0503 m? (area of outer surface)
Now, for the case of concentric spheres, we have:

& =025 rp:=015m ry=02m
A, =4zt ie A = 0283 m? (area of inner surface)

Q=

Therefore,

T, =680 K
€, =035
A, =4 m?

AT -TH
ALY
£

1 (A
—_— + —_—
& Ay

Q= -18.748 W

(for concentric spheres...(13.61))

(net radiant heat interchange betweent inner and outer spheres.)

Note: Negative sign indicates that heat flows from outer sphere to
inner sphere; this is certainly so, since the inner sphere is at a lower
temperature than the outer sphere.

Example 13.17. A convex grey body having a surface area of 4 m’
has £ = 0.35 and T, = 680 K. This is completely enclosed by a grey
surface having an area of 36 m?, & = 0.75 and T, = 310 K. Find the
net rate of heat transfer (), between the two surfaces.

(M.U. 1999).

Solution. This is the case of a two surface enclosure. Inner surface is

Epy —» Epz convex; so, view factor Fy, = 0. Also, Fy, = 1 since the inner body is
*+— "N~ AAN—SANN—@ completely enclosed by the outer surface.
R, Ry, R, The radiation network for this problem is shown in Fig. Exam-
ple 13.22 below:
- Data:
FIGURE Example 13.17 Radiation net-work T,=680K T,=310K §:=035 g:=075
for a convex grey body completely enclosed Ap=4m? Ay =36md

by ancther grey body

o = 5.67 x 107 W/(m*K) (Stefan—Boltzmann constant)

Fp=1 (since all the heat radiation emitted by surface 1 is intercepted by surface 2.)
E, = cT} ie Ej,=1212% 10" W/m’
E,, = oT; ie E,=523.63% W/m’
1-&
Now, Ryi= ——
T oeA
ie. R, = 0.464 m™ (surface resistance of inner surface)
1-¢&
and, Ry = ———=
2T g A
ie Ry = 9259 x 107° m™? (surface resistance of outer surface)
Also, Ry = !
Ay-Fy
ie. Ry = 025 m™? (space resistance between inner and outer surface)
Therefore,
Ry = Ry +Rpp + Ry
ie Ry = 0724 m™” (fotal resistance between inner and outer surface)
Then, net rate of heat transfer between surfaces 1 and 2 is given by:
Ein - Ebz
Q= — 5
Rt
ie. Qy; = 1603 x 10* Watts,
Alternatively:

We can apply the direct formula for a two surface enclosure, for which Fi; =0, F; = 1, ie.

RADIATION




Ao (T “T;)

LAy
& Ay jl g
ie. 12 = 1.603 x 10" Watt.

Exomple 33.18. A hemispherical furnace of radius 1.0 m has a roof temperature of T; = 800 K and emissivity & = 0.8. The
flat circular floor of the furnace has a temperature of T, = 600 K and emissivity & = 0.5, Calculate the net radiant heat

Qn= {for convex surface enclosed by another surface...(13.61))

exchange between the roof and the floor.

x

T,=800K
€ =08
A, =6.28m?

(M.U. 1998)

Solution, This is a two-zone enclosure problem. Fig. Exam-
ple 13.18 shows the radiation network for this problem. We
have:

Q,, = Eb] — Ebz
T, =600K . R1+R12+R2
€ =05 5 where, R; and R, are the two-surface resistances and Ry, is
Ay=3.14m the space resistance between the two radiosity potentials.
Epr —» Ep Data:
— "\ NN\ —e "\AN—8AANN—e T, =800K T; =600 K £ =08
R, Riz R, & =05 R:=1m
4= 2R m*(area of hemispherical surface 1)
FIGURE Example 13.18 Radiation network for heat 1 P
transfer between a hemispherical furnoce and its floor e A, = 6283 m? {area of surface 1}

Ay = m R m?
ie. Ay=3142 m?

o= 567 x 10° W/(m?K)

View factors:

(area of surface 2)
{area of surface 2)
{Stefan-Boltzmann constant)

Fy:=1 (since all the heat radiated by surface 7 is intercepied by hemispherical surface 1.)
Now, Ay-Fip = Ay Fy, (By reciprocity)
A, -F
Therefore, Fpo= 2
Al
ie F;; =05 (view factor from surface 1 fo surface 2)
Resistances:
1-
Now, Ry = vl
€A
ie. R, = 0.0398 m~’ (surface resistance of inner surface)
1-
and, R, = £z
£,-A,
ie. ' R, = 0.318 m? {surface resistance of outer surface)
Also, Ry = !
A By
ie. Ry, = 0318 m? (space resistance between inner and outer surface)
Therefore,
R :=Ry +Rp + R,
ie. R, = 0.676 m™ (total resistance between inner and outer surface)
Also,

Ey =0T} E, =232x10' W/m?
Ep=aT) E, =738 x10° W/m?
Then, net rate of heat transfer between surface 1 and 2 is given by:

Ebl - ‘Ebz

Qp = R

tot

FUNDAMENTALS OF HEAT AND MASS TRANSFER



